View Single Post
  #10  
Old November 21st 15, 01:03 AM posted to rec.aviation.piloting
[email protected]
external usenet poster
 
Posts: 62
Default Siemens' 110 lb world-record electric aircraft motor produce 348hp at 2,500 RPM

On Friday, November 20, 2015 at 6:15:13 PM UTC-5, wrote:
On Saturday, November 14, 2015 at 11:20:42 PM UTC-5, wrote:
On Saturday, November 14, 2015 at 6:51:57 PM UTC-5, Vaughn Simon wrote:
On 11/14/2015 5:14 PM, wrote:
As researchers continue to work on creating better
batteries, the logical solution all along was always
the Auxiliary Power Unit for charging.

Well yes that will work (assuming an electric drive train with a
battery) , ...as long as that APU produces significantly MORE power than
the average that you will need at the prop hub. The reason why you
would need MORE power is to make up for the losses inherent in the
generator, motor, battery, and controller.


Also, I forgot to mention that I'm a professional
designer and illustrator, formerly with Lockheed-
Martin. Within this electric airplane concept which
would sustain these very long ranges with an RTG,
is a series of conforming "mini-tanks" which encapsulate major
electrical components. Holding no more than 5 gallons
total, you top them off with liquid nitrogen. This
cryogenic sealed system effectively turns your electrical
system into a zero-resistance super conductor. Control
surfaces are best facilitated with servos and fly by
wire software.

This may sound a little exotic, but other people have
verified the plausibility and science behind it. A
home-build isn't out of the question. With generator,
super conduction, and fast charge NON-lithium batteries,
the range may really be how long you can sit in a seat.

---


Anyway...

Basic Aircraft Electrical Systems

Some very simple single engine aircraft do not have an electrical system installed. The piston engine is equiped with a Magneto ignition system, which is self powering, and the fuel tank is situated so it will gravity feed the engine. The aircraft is started by means of a flywheel and crank arrangement or by "hand-proping" the engine.

If an electric starter, lights, electric flight instruments, navigation aids or radios are desired, an electrical system becomes a necessity. In most cases, the system will be DC powered using a single distribution bus, a single battery and a single engine driven generator or alternator. Provisions, in the form of an on/off switch, will be incorporated to allow the battery to be isolated from the bus and for the generator/alternator to be isolated from the bus. An ammeter, loadmeter or warning light will also be incorporated to provide an indication of charging system failure. Electrical components will be wired to the bus-bar incorporating either circuit breakers or fuses for circuit protection. Provisions may be provided to allow an external power source such as an extra battery or a Ground Power Unit to be connected to assist with the engine start or to provide power whilst the engine is not running.

Advanced Aircraft Electrical Systems

More sophisticated electrical systems are usually multiple voltage systems using a combination of AC and DC buses to power various aircraft components. Primary power generation is normally AC with one or more Transformer Rectifier Unit (TRU) providing conversion to DC voltage to power the DC busses. Secondary AC generation from an APU is usually provided for use on the ground when engines are not running and for airborne use in the event of component failure. Tertiary generation in the form of a hydraulic motor or a RAT may also be incorporated into the system to provide redundancy in the event of multiple failures. Essential AC and DC components are wired to specific busses and special provisions are made to provide power to these busses under almost all failure situations. In the event that all AC power generation is lost, a static Inverter is included in the system so the Essential AC bus can be powered from the aircraft batteries.

Robust system monitoring and failure warning provisions are incorporated into the electrical system and these are presented to the pilots when appropriate. Warnings may include, but are not limited to, generator malfuntion/failure, TRU failure, battery failure, bus fault/failure and circuit breaker monitoring. The manufacturer will also provide detailed electrical system isolation procedures to be utilized in the event of an electrical fire.

In compliance with applicable regulations, components such as Standby Flight Instruments and Emergency Floor Lighting have their own backup power supplies and will function even in the event of a complete electrical system failure.

Provisions are virtually always provided for connecting the aircraft electrical system to a fixed or mobile Ground Power Unit.

http://www.skybrary.aero/index.php/A...trical_Systems

---


Conductors lose all of their electrical resistance when cooled to super-low temperatures (near absolute zero, about -273o Celsius). It must be understood that superconductivity is not merely an extrapolation of most conductors' tendency to gradually lose resistance with decreasing temperature; rather, it is a sudden, quantum leap in resistivity from finite to nothing. A superconducting material has absolutely zero electrical resistance, not just some small amount.

Superconductivity promises extraordinary capabilities for electric circuits.. If conductor resistance could be eliminated entirely, there would be no power losses or inefficiencies in electric power systems due to stray resistances. Electric motors could be made almost perfectly (100%) efficient. Components such as capacitors and inductors, whose ideal characteristics are normally spoiled by inherent wire resistances, could be made ideal in a practical sense. Already, some practical superconducting conductors, motors, and capacitors have been developed, but their use at this present time is limited due to the practical problems intrinsic to maintaining super-cold temperatures.

http://www.allaboutcircuits.com/text...rconductivity/

---