![]() |
If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. |
|
|
Thread Tools | Display Modes |
#38
|
|||
|
|||
![]()
Brian Sandle wrote in message ...
Eric Hocking wrote: Brian Sandle wrote in message ... Eric Hocking wrote: [...] I have, in spite of your diversion attempts, tried (and I believe succeeded) in showing that the crop circle proponent's arguments that FMD (pedestrian) restrictions had no impact on circle building in 2001 in the UK is unsupportable. What can be concluded from that is up to those that have been lurking. I thought river flows might give some indication of weather. Only of rainfall in the catchment area, surely? While *you* might think river flow gives some indication of weather, you have not shown it to be so. They may be a better indication than weather of what the ground is like. You're saying that a single river's flow pattern taken from one station on the river is a better indicator of a region's weather that the weather data gathered by the Bureau of Meteorological's database from over 30 stations throughout the region? http://www.met-office.gov.uk/climate/uk/networks/climnet2.html That's not logical. Why is it that you chose to ignore the rainfall data at the site you gleaned the river flow data from, as well as the hydrological summary put together by experts AND the groundwater discussion. Why is that Brian? If I were a cynical person I might mention the phrase "data mining". Why don't you put your (incorrect) assumption on the data into the full context of the information provided. They do not increase flow until the ground is saturated. (Though, not appropriate to UK in my knowledge, fast run off can occur off baked land.) Your knowledge of UK weather and water reserves is limited then - and you would have realised this if you had actually read the monthly summaries relating to rainfall, river flow and groundwater on the site you decided to ONLY use river flow data from. FYI. Earlier this year we experienced torrential rain after a longer and drier than usual summer in 2003. Water companies reported that the rivers/reservoirs and especially groundwater reserves were not being replenished because of the rain running of the dry earth. Again, your assumptions do not reflect the facts. The rest of your calculations, while interesting, do not show anything of the sort. Why not just check the monthly weather figures from the Government Meteorological Bureau? http://www.met-office.gov.uk/climate/uk/ Monthly numbers are available to 1998, but your best bet is from 1999 as the data is tabulated. It would be complex factoring in evapotranspiration. Sod complex factoring - all you want to know is weather conditions in the region. This is supplied in better detail and accuracy by weather station data than unsound derivations from river flow data that you do not completely understand. Since there are only 4 years it is not really worth it. You obviously didn't look or try too hard. The data sets go back to 1855, and the three prime weather indicators (as far as crops may be concerned, rainfall, hours of sunshine and min/max temperatures) are available back to 1895. ie http://www.met-office.gov.uk/climate/uk/stationdata/southamptondata.txt snip Whoa, whoa, whoa. You've jumped from *thinking* that river flow *may* correlate to weather (uh, what about sunshine and temperature, especially wrt crops?) Extra flows indicate the ground cannot hold the water, Incorrect and not just for physical reasons stated above. There are economical, political and social conditions that can affect river flow. Not the least of which is the changes in water abstraction licensing in the UK, let alone changes in irrigation practices in the UK agricultural industry. Your entire set of calculations are based on incorrect assumptions and therefore of little use. been less sunshine and temperature. As shown above, if you do not fully understand the data gathering process, let alone the data itself, adding in external factors such as pressures on water resources in a region, why attempt to derive weather conditions, probably incorrectly, when you have a WEATHER resource available to you? Here's a timeline of weather conditions and crops in Hampshire. / I'll do the sums for you: Month Sun Mean Cum. Jan Hours Temp Rainfall -Aug (C) (mm) 1999 1102 10.7 771 2000 1127 10.4 732 2001 1193 10.1 719 2002 1054 10.6 854 Well whaddayano? 2001 had the MOST sunshine, the LOWEST mean temperature and LEAST rainfall for those years. I'll fully admit that this is for the entire SW, but it does not gel with your conclusions very well at all. Oh, before you ask, numbers for Mar, Apr ,May a 1999 406 9.5 259 2000 451 8.8 306 2001 454 8.5 288 2002 466 9.1 300 straight to *proving* a correlation between river flow to crop circle emergence and FMD? Try showing the logic of this before attempting to force the numbers. How am I `forcing' the numbers? See below, but first, show the logic of your reasoning that river flow *should* have any relationship to crop circle timing in any year. Year 1999 2000 2001 2002 Mar+Ap+May flow 18 24 35 22 Apr+May circs 24 14 9 4 For one thing, you make the same mistake as on the researcher's page. You cannot use the total number of circles recorded in a month to show a timeline trend. Using an example I've used befo I have 4 fields and one month (say May) a circle is built in each one on the 1st. By your method 4 circles are recorded for May. Next year, 3 of the fields are closed to the public, but 4 circles are built in the remaining field, on the 31st. By your method 4 circles are recorded for May. This is further compounded by you combining the totals, so yes, you are forcing the numbers, or at least misrepresenting them for correlation you are attempting to show. The issue is, and has always been, *timing* of the appearance not number of appearances. Mar+Ap flow 13 15 25 15 Apr circs 9 3 0 1 FMD Yes(1)/No(0)0 0 1 0 Incorrect data there. If FMD Yes/No is supposed to indicate where FMD restrictions are in place, you'd be better of showing month by month trends. Total for the year is ridiculous, it shows nothing. snip You're risking more than choosing the correct correlation technique. You've yet to show that the Itchen River flow has any relationship to weather conditions. As for river flow, have you factored in seasonal abstraction from river systems? It is only very rough. Besides seasonal effects should be similar from year to year and factor out. The whole point of this part of the thread was for you to show that changes in weather conditions from year-to-year affect the timing of the appearance of circles in the UK. You are now saying that the weather, being similar from year to year, factors OUT of the equations? Which is it Brian. Does weather affect the appearance of circles or not. If not - what was all the statistics rubbish in aid of? Also there turns up a correlation of river flow to FMD You are yet to provide a logical and reasonable justification for attempting to *find* a correlation. Until you do this is just numerology. Jan Feb Mar Apr May 0.94 0.96 0.97 0.97 0.68 Different set of data again. You go on later to compare annual totals with monthly correlations yet you do not show the working. May being when it was finished there? This "correlation" implies what? That for some reason Itchen river flow was high at the same time FMD was present. One last one - why did you only use the Itchen River data when there is more than over a dozen stations in the Hampsire area you could have included? Not only that, you take the data in isolation. Try putting it in context with the rest of the available hydrological data available at that site. River flow affects government decisions on lifting FMD restrictions? Presumably the restricitions were lifted when it was thought there was less risk. I doubt there would have been any talk of rivers transporting FMD. When the land dried a bit stock could get out into the fields and have a bit less close contact and so less chance for transmission of FMD. Show a cite for this presumption. You won't be able to, because it is wrong, but I'd like to see how you came to this incorrect assumption. I documented exactly what the determination process by the government was. THis is pure obfuscation, Brian. But anyway taking the Mar Apr May flows figures, since weather might stop hoaxers, You are yet to show that the Itchen River flow readings actually has any reflection on the weather pattern trends. Next you will be asking me to prove that day is going to be lighter than night. At least that would be logic that any reasonable person could follow. But since YOU are putting forward the contention that the river station data CAN be used to reflect weather pattern trends, it IS up to you to show it. You went up this particular creek - and I think you'll find you forgot the paddle. r(flows-fmd) = 0.94. And is there a correlation between FMD & circles? Yes, r(fmd-circles) = -0.29, a small negative correlation, rather less than from above r(flows-circles) = -0.49. Then what happens when partial correlation is used to get a feel for removing affects of the factors? When the effects of the rivers are nullified then FMD becomes *positively* related to circles. r(fmd-circles.flows) = 0.57 instead of -0.29 which indicates flows are connected to cause. No it doesn't - it's just illogical numerology (how's THAT for an tautology?). It's also a contradiction of your own conviction that correlation isn't causation. Again I ask, which is it Brian? and for completeness r(flows-fmd.circles) = 0.96 instead of 0.94, no change, rather indicating circles not causative, r(flows-circles.fmd) = -0.66 instead of -0.49, not much change indicating FMD not really causative. With that small amount of data, so far, some of that could be by chance. And also shows that you can "prove" anything with forced numbers and illogical connections. Here is the formula for you to have some fun: snip You need to show that there is a logical connection between the data befor you can attempt to derive and analyse correlations. You've yet to do so. Manipulating the data in isolation and also ignoring the other station data doesn't help either. When the partial correlation tends to zero that means the partialled out variable is causal and the non-partial correlation is spurious. When the partial correlation is no different from the non-partial, that means the partailled out variable is not causal. When the data is taken in isolation, misunderstood and incomplete, ALL conclusions are spurious. You need first to show that there is a logical connection between a single river's flow trend as an indicator of weather conditions (rainfall, temperature, sunshine). How about using *weather* data directly for the county, instead of attempting to derive this data from a single river monitoring station? The first crop circle for 2001 was in Hampshire at latitude 50 deg 58.6 min north, longitude 1 deg 5.9 mins west. That is only 10 or 20 miles from the Itchen river (which has its mouth near Southampton). It is not a big reiver and seems to have its source on the same side of South Downs. .... and you ignore the dozen or so other station data. .... and you are yet to show a logical connection between river flow and weather .... and you are yet to show a logical connection between weather and FMD .... and you are yet to show a logical connection between river flow and FMD I suggest you read the guidelines and summaries on the NRFA site before you waste any more time crunching unconnected data. -- Eric Hocking |
Thread Tools | |
Display Modes | |
|
|