A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Piloting
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Angle of climb at Vx and glide angle when "overweight": five questions



 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #8  
Old November 28th 03, 03:56 AM
Gerry Caron
external usenet poster
 
Posts: n/a
Default


"Koopas Ly" wrote in message
om...
Gerry,

I agree with everything you said.

Would you agree that augmenting an airplane's weight undoubtedly
increases its drag? Doesn't matter if the airplane is powered or not.


Nope. Weight has no direct effect on drag. Drag is composed of parasitic
drag and induced drag. Parasitic drag = Cd*1/2*rho*V^2*S where rho is
density of the fluid and S is the wing area. Cd and V should be obvious.
Drag increases in denser air, with greater speed, and greater wing area
(fowler flaps). Cd can be changed with flaps or speedbrakes. Induced drag
is proportional to lift and AOA. Think of it this way; at high AOA part of
that lift vector (which is perpendicular to the wing) is lifting towards the
rear, which is drag.

I think your confusion comes from the idea that the heavier plane has to fly
faster at the same AOA to generate lift equal to weight. At that higher
speed, the total drag will be higher. That is why the power required curve
moves up (more power to overcome more drag) and right (higher AS to generate
the needed lift.) Weight moves the curve because it drives the needed lift,
it does not alter the relationship between lift and drag.

Now, apply that to an airplane in a steady climb at full power and
best L/D speed and another one that's gliding at best L/D. Both
airplanes are identical so ideally, they would be flying at the same
speed since I don't think best L/D speed changes with power settings.


OK.

I hope we can agree that both airplanes are operating at their minimum
drag points, points of least thrust required.


The minimum drag point is the point of least thrust required. But that's
not best L/D. For a glider, it's the speed for minimum sink rate. You'll be
sinking at a steeper angle than best L/D, but your speed is lower so the
vertical speed is at a minimum.

This means that in the
case of the airplane climbing, its climb angle is maximized.


Nope. While Vx and Vy have no specific correlation with speed for min drag
or best L/D. They are driven by excess thrust and power only. In my plane,
Vy is 79 kts, best L/D is 72 kts.

In the
case of one gliding, its descent angle is minimized.


That's correct.

I hope you're still in agreement.

Next, double both airplanes' weights, and fly them faster by 41%
(sqrt(2)) so that they are still operating at their best L/D angle of
attack.

Would you agree that in both cases, both the drag and power required
increased?


Yes. Which is why rate of climb suffers for the climbing a/c. For the
glider, the angle stays the same because L/D is the same. The extra power
required comes from the higher rate at which you trade altitude (potential
energy) for speed (kinetics energy.)

To me, I immediately relate the increase in drag as a decrease in
climb angle (for the powered airplane) and an increase in descent
angle (for the gliding airplane). Likewise, the increase in power
required means a decrease in climb rate (for the powered airplane) and
an increase in sink rate (for the gliding airplane).


Correct for the climbing case. For the glider, the higher sink rate
generates more power in the same proportion as the drag increase. So speed
increases and the descent angle stays the same.

Final conditions: For the powered plane that's ascending, as you've
said, the airspeed will be higher, maximum climb angle SHALLOWER,
climb rate lessened, ground speed increased.


If the speed is higher and the climb rate is less, the angle will be
shallower. Plot it out.

For the gliding airplane, the airspeed will be higher, glide angle
UNCHANGED, sink rate higher, ground speed higher.


The best glide angle is driven by Cl/Cd. At higher weights, you have to go
faster to maintain best L/D (or Cl/Cd). But since the ratio doesn't change,
the glide angle doesn't either.

I'd recommend a copy of *Aerodynamics for Naval Aviators* It's a good start
at explaining it all without getting too involved in the math.

Gerry


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT +1. The time now is 03:30 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 AviationBanter.
The comments are property of their posters.