![]() |
If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. |
|
|
Thread Tools | Display Modes |
#10
|
|||
|
|||
![]()
In article ,
Brian Whatcott wrote: On Mon, 14 Jun 2004 15:17:48 GMT, Dave S wrote: // My question is, given the limited "resistance" of some of the radio components (and the ability to tolerate less than a watt input if I paraphrased it correctly) I am wondering just how much energy the radio system is being exposed to flying by the transmitting elements a mile away laterally, and how prudent that is for the longevity of the components. Lets use 50,000 watts if that is appropriate for the example. Dave You are not the only one who has experienced breakthrough near a big transmitter tower. Here's a rough, rough estimate of intercepted power. If 50 kw were distributed through a spherical surface of 1 mile in radius, what would the power intercepted by one square yard? (arbitrary cross-section value for a 1/4 wave whip...) power times Antenna cross-section / Extended surface area [4/3 pi r squared] = 4 milliwatts Correction: surface area of a sphere is 4 pi r squared (volume is 4/3 pi r cubed) 1.294 milliwatts per SQUARE YARD of surface area, at 1 statute mile 0.995 milliwatts per SQUARE YARD of surface area, at 1 nautical mile. 0.995 milliwatts/square yard is the same energy density that a _FIVE_WATT_ transmitter creates at a distance of 20 yards. Does anybody worry about 5 watts @ 20 yards? Assuming you don't have a pacemaker, that is. grin The above is -not- 'fair' to the big transmitter sites, however. It's true, they they are limited to 50kw 'out the back of the transmitter' , *BUT* 'gain' antennas are almost universally deployed by VHF (and above) stations. An 'effective radiated power' in the several _megawatt_ range is not uncommon. One of the stations in downtown Chicago announces itself at at least 8 megawwatts (ERP) -- might be 9 megawatts, memory isn't giving a firm answer on -that- point. grin 8 megawatt ERP is 160 times the effective energy of a 50kw output. Or about 53Mwatt/sq.yd at 1 statute mile (40mw/sq.yd at 1 naut. mi.) Roughly equivalent to a FIFTY WATT transmitter at 40 yards. (many taxicab companies use 30-watt VHF radios in the vehicles, and it usually doesn't affect the FM receiver in the cab itself -- with maybe _two_ yards between the tx and rx antennas.) A typical VHF aircraft antenna is, electrically, about 4/3 of a yard long. if it is 1/4" in diameter, it presents a maximum cross-section of just about 1/100 of 1 square yard. Which, at 100% capture/conversion efficiency would pick up just under 0.5milliwatts of energy. v^2 would be 0.025 -- the peak voltage would be about 0.158 V. Capture/conversion efficiency is nowhere *near* 100%. If it was, there would be a 'dead zone' behind _every_ receiver. 'gain' figures for a 3-element beam antenna suggest that capture efficiency for a single element is on the order of _one_ percent. Which would equate to 5 microwatts of power, and an induced voltage of about 15 millivolts. _Not_ threatening to the 'health' of the equipment, but definitely strong enough to produce enough 'distortion' in a 1st RF amp stage to create enough 'in-band' signal to pass through the rest of the receiver. |
Thread Tools | |
Display Modes | |
|
|