A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Owning
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Wind/Solar Electrics ???



 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #11  
Old December 23rd 05, 06:46 PM posted to rec.aviation.owning,sci.electronics.design,alt.solar.photovoltaic
external usenet poster
 
Posts: n/a
Default Wind/Solar Electrics ???


wrote in message
...
Joel Kolstad wrote:

(I can't tell you how many times I've seen people stating something like,
'The Nyquist theorem requires sampling at at least twice the highest
frequency present in the signal," when of course it says no such thing.)


What do you think it means?


Nyquist figured out that higher frequency components of the input signal
will 'alias' and you will lose the ability to tell them from lower frequency
components. In order to avoid 'losing information' and not being able to
tell whether a particular sample stream was from a low or high frequency
component, Nyquist's theorem states you must sample at least twice as fast
as the highest component present.
http://www.cs.cf.ac.uk/Dave/Multimedia/node149.html
http://www.efunda.com/designstandard...sp_nyquist.cfm

A lot of folks mistake it to think you need to sample at least twice as fast
as the 'signal of interest' also, and try to ignore high frequency
components of the input because they're 'not interested in that noise'. But
what Nyquist proved was that any frequency in the sampled signal that is
more than 1/2 the sample frequency will 'alias' and 'wrap around' and be
*indistinguisable* from a frequency component that is less than 1/2 the
sample frequency.

For example, if sampling at 1000 hz, and the sampled signal is a 900 hz
'pure sine wave', the sampled data would look *exactly* the same as if you
had sampled a 100 hz 'pure sine wave'. They would be 'indistinguisable'.
So if/when you try to convert the sampled data back to analog, how do you
know whether it should reconstruct a 100 hz wave, or 900 hz? You don't, so
you have a conundrum.

So, to avoid losing this 'information' of being able to tell if you had a
100 hz or 900 hz input, the standard thing to do is filter the input so that
there is *no* 900 hz input. Then, the resulting sample data must have come
from the 100 hz component. And if/when you want to reconstruct it, you
*know* it should form a 100 hz signal because no 900 hz signal could
possibly been present (you eliminated it before sampling).

And as Joel mentioned earlier, since most low-pass filters do not have
perfect 'cutoff' (IIRC, simple first-orders 'roll off' at something like 3
db/decade), it is more common to eliminate any frequency component that is
more than about 40% of the sampling frequency.

daestrom


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Question on 172 M electrics... (1974 Skyhawk II) [email protected] Piloting 8 April 10th 04 04:52 AM


All times are GMT +1. The time now is 08:27 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 AviationBanter.
The comments are property of their posters.