A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Rotorcraft
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Too much fun.. almost..



 
 
Thread Tools Display Modes
  #11  
Old October 30th 04, 05:01 PM
B4RT
external usenet poster
 
Posts: n/a
Default


"The OTHER Kevin in San Diego" skiddz *AT* adelphia *DOT* net wrote in
message
Man, I hope you've got better seat cushions than I'm sitting on.
After about 90 mins, my ass is asleep in the R22..


Yep, Call Oregon Aero http://www.oregonaero.com/ they make these magic
portable seat
cushions that are a total godsend.


If I had a 600SHP turbine behind me instead of 124hp of Lycoming 4
cylinder, I could get much higher.


I dont have 600HP... Im only allowed to use 275 of the available horsies in
cruise
because doing otherwise tends to rip the teeth off the transmission.

THIS is one of my greatest fears in flying. Right now, if I even see
a tower of any kind, I fly right over the top of it.


I dont mean to be preachie, but you've got to be carefull when going
straight over
the top of a tower, especially on lower viz days. Sometimes the lights are
out of service
and you cant see the actual top. BTW: never trust the charted tower
heights, they are
frequently very wrong. ( I reported one to NOAA that was about 800 ft taller
than
what the chart said, and its still not fixed two years later.)

CYA,
Bart


  #12  
Old October 30th 04, 05:38 PM
Jim Carriere
external usenet poster
 
Posts: n/a
Default

B4RT wrote:
I dont mean to be preachie, but you've got to be carefull when going
straight over
the top of a tower, especially on lower viz days. Sometimes the lights are
out of service
and you cant see the actual top. BTW: never trust the charted tower
heights, they are
frequently very wrong. ( I reported one to NOAA that was about 800 ft taller
than
what the chart said, and its still not fixed two years later.)


No kidding about lights not working... pull up notams for pretty much
any airport, and you get one or several "Tower 4.5 SW 419 AGL lights
OTS" (or along those lines).

Some folk wisdom about towers, once told to me- if you picture the
tower falling over as you fly past it, and you are far enough away
that it will miss, then you are probably safe from the guy wires.
Note use of "probably." Best bet is watch out and be careful.

There is a big (1300') tower in our instrument practice area where I
work. During the day I keep track of it with one eye and often check
the altimeter with the other. At night I keep a bit farther away to
be sure. The students tend to do a decent job holding altitude
(under the "hood") after I mention that tower

  #13  
Old October 30th 04, 06:43 PM
hellothere.adelphia.net
external usenet poster
 
Posts: n/a
Default

Not sure on the exact altitude where the efficency is, but I remember
something about 8,000' with a single engine turbine. Not that you
would find me that high in a helicopter anyway, unless the terrain
dictates it.

On Fri, 29 Oct 2004 22:10:53 GMT, "Steve R."
wrote:

Hi!

I had a long drawn out reply to your first sentence (about TAS, CAS, and
IAS) until I re-read it and paid more attention to the "ignoring the winds"
part! ;-) I agree, assuming absolutely NO wind, TAS should equal ground
speed if we're doing the calculations correctly. Since that's never the
case (the part about absolutely NO wind that is), for all intents and
purposes, I try to never equate airspeed and ground speed as the same thing
although the first will obviously have an impact on the second.

The only reason I mentioned tail winds in my original question was to
clarify that if you've got a good enough tail wind, your ground speed will
be up enough to compensate for any airspeed losses that occur due to the
increased altitude.

I hear what you're saying about less drag on the lift producing surfaces
(wings!) but aren't you also having to fly at greater collective settings in
the "relatively" thin air? From what I think I'm getting out of all this,
that minor change isn't hurting you enough to offset the gains of climbing
up to 5000 feet and the improved fuel burn (5-6 gallons/hr isn't chump
change these days!) doesn't hurt a bit either. In the turbine helicopter
you fly, where is the point of diminishing returns? In other words, how
high can you go before any improvement in TAS or fuel consumption quits
netting you any gain?

Thanks for the reply.
Fly Safe,
Steve R.



hellothere.adelphia.net wrote in message
.. .
Remember, TAS is your airspeed (ignoring the winds) in relation to the
ground. IAS is to the air around you. The higher you go, the less drag
on the fuselage and same as a fixed wing, less drag on lift prducing
surfaces mean more efficiency, which means a little better airspeed.
That IAS maybe lower due to less power, but for that amount of power
you are more efficient. That all adds up to higher TAS and lower fuel
burns. In the turbine I fly, I see up to a 5-6 gallon an hour less
burn at 5,000'.



On Fri, 29 Oct 2004 13:56:01 GMT, "Steve R."
wrote:

"B4RT" wrote in message
...

I usually use about 2000 agl for medium cross-countries and 45-55
hundred
for long ones. (My turbine works really good here + I get a free TAS
increase from the altitude) The other reason to fly higher on cross
countries is that you'll have less worry about towers & wires.

Bart

Ok, I'm a bit confused here. So Bart, or Kevin, or anyone who cares to
put
in their 2 cents worth, have at it. :-)

My issue is with Bart's statement that there's a free TAS increase in his
helicopter with altitude. I'm sitting here, thinking about how I want to
word all of this and I'm starting to think that I'm about to answer my own
question so I'll put it to you kind folks and see what comes back!

I understand that fixed wing aircraft gain efficiency with altitude. The
simplified explanation is that as the aircraft climbs to greater altitudes
(ie: thinner air), there's less frictional drag on the airframe and the
aircraft achieves a higher TAS (true airspeed for those who may not know)
as
long as you're not flying so high that you're no longer able to pull
standard cruise power from the engine. Assuming the same power settings
from the engine/engines, you'll achieve a higher cruising airspeed (TAS)
at
altitude than you will at sea level. All of this happens automatically.

As for helicopters (any rotorcraft), the airspeed of the "wings" (ie: the
rotor blades) is limited to the maximum rpm that the rotor system can
sustain. Because of this, as the helicopter climbs to altitude, the rotor
blades can't see the kind of TAS increase that a fixed wing aircraft
enjoys
because the speed of the rotor blades is tied to the max rpm of the rotor
system. Consequently, as the air thins with increased altitude, the
helicopter has to fly with ever increasing collective settings to maintain
the same lift/thrust levels. When you can't increase airspeed (rotor
rpm),
you have to increase AOA (collective) to maintain a given lift/thrust
level!? One negative side effect of this is that the helicopters Vne
speeds
lower as the altitude rises. What I've always been told is that because
of
this, it doesn't generally pay for a helicopter to go to altitude on a
x-country flights unless there are sufficient favorable winds (ie: tail
winds!) to make up the difference. (?)

Now to the part where I might be answering my own question. Just as the
fixed wing aircraft sees in increase in TAS at altitude as long as it can
still maintain cruise power (generally 65 to 75% power), I'm starting to
think (I hadn't really considered it this way before!) that as long as the
helicopter isn't pushing it's Vne limits at altitude (due to higher
collective settings), the fuselage will see an increase in TAS also, even
if
the rotor blades themselves are not, because of rpm limitations on the
main
rotor system. Of course, if the fuse is seeing a higher TAS, then the
rotor
blades will also see in increase, at least on the advancing
side..........but I don't think I want to get into that too deeply! ;-)

Am I getting this anywhere near right? I hope this makes sense. Thanks
for
any replies! :-)

Fly Safe,
Steve R.




 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump


All times are GMT +1. The time now is 05:26 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 AviationBanter.
The comments are property of their posters.