"Bob Salvo" schreef in bericht
...
Warm breeze picks up moisture at upwing edge of pond. Warm moist air
being
lighter than dry warm air, begins to rise, initiating thermal.
Happy New Year!
Bob
Yes, I agree Bob, Karel, NL
Mike Borgelt wrote:
Water vapour has a molecular weight of a bit over 18 and dry air a bit
more than 28. Water vapour at the same pressure as the air around it
is considerably less dense than dry air. More water vapour= more
bouyancy.
Just a simple approach with rough figures to support Mike's statement and
hopefully to trigger the "smart guys".
At atmospheric pressure (say 1013 hPa) and at 20 C° the density of dry air
is about 1.22 kg/m3. Pure water vapor at atmospheric pressure has a density
of 18/28 x 1.22 = 0.785 kg/m3, or 785 g/m3.
Air is saturated with water vapor when it contains 25 g/m3 at 20 C°.
Assume a relative humidity of say 30% on a dry day. Then one cubic meter of
air contains 0.3 x 25 = 7.5 g of water vapor and the air has then a density
of 1.2159 kg/m3. Assume further that over a shallow pond the humidity of the
air increases to 60% due to a serious evaporation from the pond. Then the
air directly over the pond will contain 0.6 x 25 = 15.0 g/m3 corresponding
to an air density of 1.2118 kg/m3.
So one cubic meter of air having 60% humidity is 1.2159 - 1.2118= 0.0041 kg
lighter then air with a humidity of 30%. This 4.1 g/m3 does not look much,
but compare this figure with the decrease in density when air is heated up.
The temperature coëfficiënt of air is 0.0044 kg/m3 per °C at 20 °C, meaning
that when air is heated up by one degree its density decreases with 4.4
g/m3.
So one may conclude that changing the relative humidity of air from 30% to
60% has the same effect on buoyancy as raising the temperature of air by 1
°C.
So it may be worthwhile indeed to search for a thermal over a shallow pond
in a dry area when low as I stated earlier.
Karel, NL
|