![]() |
If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. |
|
|
Thread Tools | Display Modes |
|
#1
|
|||
|
|||
![]()
"jharper aaatttt cisco dddooottt com" "jharper aaatttt cisco dddooottt
com" wrote in message news:1105391055.635118@sj-nntpcache-3... At sea level, the change in atmospheric pressure with altitude is close to 1"Hg/1000'. Logically, this would mean that the air pressure would drop to zero somewhere not much above 30000'. It doesn't, because as the density drops the variation with altitude also changes. Which brings to mind the question, how does an altimeter deal with this? As far as I know, it's just a simple aneroid barometer with a bunch of linkages and gears to turn its expansion into pointer movement. My altimeter is marked "accurate to 20000' ". Is this why? Do altimeters for higher altitudes have some kind of clever mechanism to deal with the non-linearity of pressure at higher altitudes. I asked my acro instructor (10K+ hrs, airforce instructor pilot, ex U2 pilot so should know a thing or two about high altitudes). He explained the non-linearity of pressure to me but was stumped on how this translates to the altimeter mechanism. Anyone know? John Visit this website and it will answer your questions about the relationship between pressure, temperature and altitude... altimeters are designed to take the non-linearity into account... http://www.lerc.nasa.gov/WWW/K-12/airplane/atmosi.html |
#2
|
|||
|
|||
![]() Dean Wilkinson wrote: Visit this website and it will answer your questions about the relationship between pressure, temperature and altitude... altimeters are designed to take the non-linearity into account... http://www.lerc.nasa.gov/WWW/K-12/airplane/atmosi.html Nice site, thanks. But presumably there is some standard atmospheric model that altimeters use? After all nobody actually cares whether FL300 is really 30000' feet above MSL, as long as everyone flying there is at the same altitude and, more importantly, not at somebody else's FL290 or FL310. Which implies that there must be some standard mechanical way of making the translation? I'll ask next time I visit my avionics shop, but considering what each visit costs I quite hope this won't be for a while. John |
#3
|
|||
|
|||
![]()
jharper aaatttt cisco dddooottt com wrote:
Dean Wilkinson wrote: Visit this website and it will answer your questions about the relationship between pressure, temperature and altitude... altimeters are designed to take the non-linearity into account... http://www.lerc.nasa.gov/WWW/K-12/airplane/atmosi.html Nice site, thanks. But presumably there is some standard atmospheric model that altimeters use? After all nobody actually cares whether FL300 is really 30000' feet above MSL, as long as everyone flying there is at the same altitude and, more importantly, not at somebody else's FL290 or FL310. Yes, there is a standard model and if you click on the first link on the cited page you get to: http://www.lerc.nasa.gov/WWW/K-12/airplane/atmos.html which gives the equations describing that standard model. Which implies that there must be some standard mechanical way of making the translation? There's a mathematically defined correspondence between altitude and pressure under the standard atmosphere assumption. But I doubt if the specific mechanical means of achieving that correspondence is specified anywhere. As long as the manufacturer makes an instrument that is shown to give the right correspondence to within a specified accuracy why should it matter exactly how they do it? I'll ask next time I visit my avionics shop, but considering what each visit costs I quite hope this won't be for a while. |
#4
|
|||
|
|||
![]()
Didn't see that, thanks for pointing it out.
At least that explains the note on my altimeter saying "certified to 20000' " which I hadn't understood before. I wonder how altimeters for airliners work, given the change that happens at 36152' - or indeed the U2 altimeter. Must be some interesting stuff inside. John Peter wrote: jharper aaatttt cisco dddooottt com wrote: Dean Wilkinson wrote: Visit this website and it will answer your questions about the relationship between pressure, temperature and altitude... altimeters are designed to take the non-linearity into account... http://www.lerc.nasa.gov/WWW/K-12/airplane/atmosi.html Nice site, thanks. But presumably there is some standard atmospheric model that altimeters use? After all nobody actually cares whether FL300 is really 30000' feet above MSL, as long as everyone flying there is at the same altitude and, more importantly, not at somebody else's FL290 or FL310. Yes, there is a standard model and if you click on the first link on the cited page you get to: http://www.lerc.nasa.gov/WWW/K-12/airplane/atmos.html which gives the equations describing that standard model. Which implies that there must be some standard mechanical way of making the translation? There's a mathematically defined correspondence between altitude and pressure under the standard atmosphere assumption. But I doubt if the specific mechanical means of achieving that correspondence is specified anywhere. As long as the manufacturer makes an instrument that is shown to give the right correspondence to within a specified accuracy why should it matter exactly how they do it? I'll ask next time I visit my avionics shop, but considering what each visit costs I quite hope this won't be for a while. |
#5
|
|||
|
|||
![]()
On Mon, 10 Jan 2005 18:09:48 -0800, "jharper aaatttt cisco dddooottt
com" "jharper aaatttt cisco dddooottt com" wrote: snip I wonder how altimeters for airliners work, given the change that happens at 36152' - or indeed the U2 altimeter. Must be some interesting stuff inside. http://www.rockwellcollins.com/ecat/...html?smenu=109 http://www.cas.honeywell.com/ats/products/airdata.cfm Typically the DADC's are corrected for known issues/errors in the pitot/static system of the specific type aircraft it is installed in, as well as the "change"s you've noted. TC |
Thread Tools | |
Display Modes | |
|
|