![]() |
If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. |
|
|
Thread Tools | Display Modes |
|
#1
|
|||
|
|||
![]()
Actually, she's right. You need higher speed at higher altitudes in
order to maintain a given amount of lift, because the air isn't as dense. However, you don't necessarily need more power, because thin air presents a lot less resistance to the aircraft. You need more power to maintain the same amount of lift as you get higher. By "same amount of lift" I take that to mean angle of attack and the resulting IAS for the same dynamic pressure. The formula is predicated on TAS. |
Thread Tools | |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
AOPA Stall/Spin Study -- Stowell's Review (8,000 words) | Rich Stowell | Aerobatics | 28 | January 2nd 09 02:26 PM |
Hey! What fun!! Let's let them kill ourselves!!! | [email protected] | Naval Aviation | 2 | December 17th 04 09:45 PM |
USAF = US Amphetamine Fools | RT | Military Aviation | 104 | September 25th 03 03:17 PM |
#1 Jet of World War II | Christopher | Military Aviation | 203 | September 1st 03 03:04 AM |
Change in TAS with constant Power and increasing altitude. | Big John | Home Built | 6 | July 13th 03 03:29 PM |